
CS221 Problem Workout
Week 2

Key Takeaways from this Week
The goal of ML is to learn a function f parameterized by w s.t. fw(x) is very close to y.
Each algorithm is a triplet of three design decisions:

1. Hypothesis class – How will I write down my prediction for y as a function of x?
Which parameters w do I need to learn?

2. Loss function – How do I measure how far my prediction is from the real y?

3. Optimization algorithm – What algorithm will I use to minimize my loss function?

Hypothesis class Loss function Optimization algorithm

y ∈ R Linear regression fw(x) := w · ϕ(x) Squared loss: (fw(x)− y)2 GD or SGD

y ∈ {−1, 1} (Binary) linear classification fw(x) := sign (w · ϕ(x))
0-1 loss: 1[fw(x) ̸= y] Cannot use GD, SGD

Hinge loss: max{1− (w · ϕ(x))y, 0} GD or SGD

Logistic loss: log
(
1 + e−(w·ϕ(x))y) GD or SGD

Dimension check. Above, w, ϕ(x) ∈ Rd, while y is a scalar.

1



1) Problem 1: Non-linear features

Consider the following two training datasets of (x, y) pairs:

• D1 = {(−1,+1), (0,−1), (1,+1)}.
• D2 = {(−1,−1), (0,+1), (1,−1)}.

Observe that neither dataset is linearly separable if we use ϕ(x) = x, so let’s fix that.

Define a two-dimensional feature function ϕ(x) such that:

• There exists a weight vector w1 that classifies D1 perfectly (meaning that w1 ·
ϕ(x) > 0 if x is labeled +1 and w1 · ϕ(x) < 0 if x is labeled −1); and

• There exists a weight vector w2 that classifies D2 perfectly.

Note that the weight vectors can be different for the two datasets, but the features
ϕ(x) must be the same.

Some additional food for thought: Is every dataset linearly separable in some feature
space? In other words, given pairs (x1, y1), . . . , (xn, yn), can we find a feature extractor
ϕ such that we can perfectly classify (ϕ(x1), y1), . . . , (ϕ(xn), yn) for some linear model
w? If so, is this a good feature extractor to use?

2



2) Problem 2: Backpropagation

Consider the following function

Loss(x, y, z, w) = 2(xy +max{w, z})

Run the backpropagation algorithm to compute the four gradients (each with respect
to one of the individual variables) at x = 3, y = −4, z = 2 and w = −1. Use the
following nodes: addition, multiplication, max, multiplication by a constant.

3



3) Problem 3: K-means

Consider doing ordinary K-means clustering with K = 2 clusters on the following
set of 3 one-dimensional points:

{−2, 0, 10}. (1)

Recall that K-means can get stuck in local optima. Describe the precise conditions on
the initialization µ1 ∈ R and µ2 ∈ R such that running K-means will yield the global
optimum of the objective function. Notes:

• Assume that µ1 < µ2.

• Assume that if in step 1 of K-means, no points are assigned to some cluster j,
then in step 2, that centroid µj is set to ∞.

• Hint: try running K-means from various initializations µ1, µ2 to get some intu-
ition; for example, if we initialize µ1 = 1 and µ2 = 9, then we converge to µ1 = −1
and µ2 = 10.

4



4) [optional] Problem 4: Non-linear decision boundaries

Suppose we are performing classification where the input points are of the form (x1, x2) ∈
R2. We can choose any subset of the following set of features:

F =

{
x2
1, x

2
2, x1x2, x1, x2,

1

x1

,
1

x2

, 1,1[x1 ≥ 0],1[x2 ≥ 0]

}
(2)

For each subset of features F ⊆ F , let D(F ) be the set of all decision boundaries
corresponding to linear classifiers that use features F .

For each of the following sets of decision boundaries E, provide the minimal F such
that D(F ) ⊇ E. If no such F exists, write ‘none’.

For example the set of features F = {x2
1, x2} allows the decision boundary of parabolas

opening in the x2 axis, centered at the origin:

• E is all lines [CA hint]:

(3)

• E is all circles centered at the origin:

(4)

• E is all circles:

(5)

• E is all axis-aligned rectangles:

(6)

• E is all axis-aligned rectangles whose lower-right corner is at (0, 0):

(7)

5


