
CS221 Problem Workout
Week 1

Welcome to CS 221! During the problem sessions, we will work through practice homework
and exam problems. If you have any questions, comments, concerns, feel free to reach out
to the problem session lead Samantha Liu, and co-presenter Michael Ryan. Here are some
key takeaways from this week:

Key Takeaways from this Week
1. Syllabus: Please take some time and review the course syllabus. If you have any

questions or concerns, please reach out to the instructors and or CAs.

2. Gradient and Gradient Descent:

• Gradient: the vector representing the direction and rate of the fastest increase
of a scalar-valued function f at a point. ∇f can be derived by taking all partial
derivatives of f and forming them into a vector-valued function.

• Gradient Descent: an optimization algorithm for finding the local minimum of
a differential function f by taking repeated steps in the opposite direction of the
gradient at the current point.

3. Loss Functions (Preview): The measure of how far the model’s prediction is from
the real (or ground truth) y.
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1 Practice Problems
1) Problem 1: Gradient computation

(i) Let ϕ(x) : R 7→ Rd and w ∈ Rd. Consider the following loss function.

Loss(x, y,w) =
1

2
max{2− (w · ϕ(x))y, 0}2. (1)

Compute its gradient ∇wLoss(x, y,w).
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2) Problem 2: More gradient computations

(i) Compute the gradient of the loss function below.

Loss(x, y,w) = σ(−(w · ϕ(x))y), (2)

where σ(z) = (1 + exp(−z))−1 is the logistic function.

(ii) Suppose we have the following loss function.

Loss(x, y,w) = max{1− ⌊(w · ϕ(x))y⌋, 0}, (3)

where ⌊a⌋ returns a rounded down to the nearest integer. Determine what the gradient
of this function looks like, and whether gradient descent is suitable to optimize this
loss function.
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3) Problem 3: Gradient and Gradient Descent

(i) Let ϕ(x) : R 7→ Rd, w ∈ Rd. Consider the following loss function.

Loss(x, y,w) =


1− 2(w · ϕ(x))y if (w · ϕ(x))y ≤ 0

(1− (w · ϕ(x))y)2 if 0 < (w · ϕ(x))y ≤ 1

0 if (w · ϕ(x))y > 1,

where y ∈ R. Compute the gradient ∇wLoss(x, y,w).

(ii) Let d = 2 and ϕ(x) = [1, x]. Consider the following training loss function.

TrainLoss(w) =
1

2

(
Loss(x1, y1,w) + Loss(x2, y2,w)

)
. (4)

Compute ∇wTrainLoss(w) for the following values of x1, y1, x2, y2,w.

w =

[
0,

1

2

]
,

x1 = −2, y1 = 1,

x2 = −1, y2 = −1.
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(iii) Now, let’s define the Gradient Descent update rule for some function TrainLoss(w) :
Rd 7→ R. The rule helps us update the weights w.

w := w − η∇wTrainLoss(w), where η is the step size. (5)

Perform two iterations of Gradient Descent to minimize the objective function
TrainLoss(w) = 1

2

(
Loss(x1, y1, w) + Loss(x2, y2, w)

)
with values for x1, y1, x2, y2 from

part (iii), using the weights update equation above. Use initialization w0 =
[
0, 1

2

]
and

step size η = 1
2
.
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4) Problem 4 (Extra): Vector visualization
Recall that we can visualize a vector w ∈ Rd as a point in d-dimensional space. Let
us now visualize some vectors in 2 dimensions on pen and paper.

(i) Consider x ∈ R2. Draw the line (i.e. the “decision boundary”) that separates
between vectors having a positive dot product with weights w = [3,−2] and those
having a negative dot product. Shade the part of the 2D plane that contains vectors
satisfying w · x > 0.

Hint: It might help to write out the expression for the dot product and seeing the
relation between x1 and x2 that leads to a positive dot product. You could also use
the geometric interpretation of the dot product.
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(ii) Repeat the above for w = [2, 0] and w = [0, 2].
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(iii) A small twist: visualize the set of vectors where w · x ≥ 1 for w = [3,−2].

8



(iv) Consider the following element-wise inequality notation. For two vectors a,b ∈ Rd,

a ≤ b ⇐⇒ ai ≤ bi ∀i = 1, 2, . . . d. (6)

Suppose we have a matrix A ∈ R2×2 and a vector b ∈ R2 as follows.

A =

[
3 −2
2 0

]
,b = [1, 0]. (7)

Visualize the set of vectors where Ax ≥ b. Hint: A matrix vector product is a collection
of dot products, and the above set can be obtained by the intersection of two of the
sets constructed in the previous questions.
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