
CS221 Problem Workout Solutions
Week 4

Key Takeaways from this Week
We formalize a Markov Decision Process or MDP for short as:

• States: States S with starting state sstart ∈ S.

• Termination State: isEnd(s).

• Actions: a ∈ A(s), all possible actions at state s.

• Rewards: R(s, a, s′), the reward of going from state s to s′ by taking action a.

• Transitions: T (s, a, s′), the probability of going from state s to s′ by taking action a.

• Discount: 0 ≤ γ ≤ 1, the discount factor (default 1) for computing utility.

Vπ(s) is the expected utility received by following policy π from state s.
Qπ(s, a) is the expected utility of taking action a from state s, and then following policy π.

The following are off-policy algorithms that output the optimal Q-value, Qopt:

• Value Iteration: V
(t)
opt(s)← maxa∈A(s) Q

(t−1)
opt (s, a).

• Model-Based Value Iteration: Estimate T and R using Monte Carlo, then run
value iteration using estimates T̂ and R̂.

• Q-Learning: Estimate Q̂opt(s, a) based on (i) the reward to state s′ and (ii) the
estimated optimal max value of s′.

The following are on-policy algorithms that output the Q-value, Qπ, of a specific policy:

• Policy Iteration: V
(t)
π (s)← Q

(t−1)
π (s, π(s)).

• Model-Free Monte Carlo: Estimate Q̂π(s, a) from the utility, ut, along the path.

• SARSA: Estimate Q̂π(s, a) based on (i) the update (s, a, r, s′, a′) and (ii) the estimated
Q̂π(s

′, a′).

Algorithm Estimating Based On
Model-Based Monte Carlo Q̂opt s0, a1, r1, s1, a2, r2, s2, . . . =⇒ T̂ , R̂

Q-Learning Q̂opt (s, a, r, s′), V̂opt(s
′)

Model-Free Monte Carlo Q̂π ut = rt + γrt+1 + γ2rt+2 + . . .

SARSA Q̂π (s, a, r, s′, a′), Q̂π(s
′, a′)

1



1) Problem 1: MDP for Riding the Bus

(a) Sabina wants to go from their house (located at location 1) to the gym (located
at location n). At each location s, Sabina can either (i) deterministically walk
forward to the next location s+ 1 (takes 1 unit of time) or (ii) wait for the bus.
The bus comes with probability ϵ, in which case, it will take Sabina to the gym in
1 + α(n− s) units of time, where α is some parameter. If the bus doesn’t come,
then Sabina stays put waiting for nothing, and that takes 1 unit of time.
Let our reward be negative time, which is equivalent to minimizing the time it
takes to get to the gym.

1 2 3 4 . . . n

House · · · Gym

We have formalized the problem as an MDP for you:

• State: s ∈ {1, 2, . . . , n} is Sabina’s location
• Actions(s) = {Walk,Bus}

• Reward(s,Walk, s′) =

{
−1 if s′ = s+ 1

−∞ otherwise

• Reward(s,Bus, s′) =


−1− α(n− s) if s′ = n

−1 if s′ = s

−∞ otherwise

• T (s′|s,Walk) =

{
1 if s′ = s+ 1

0 otherwise

• T (s′|s,Bus) =


ϵ if s′ = n

1− ϵ if s′ = s

0 otherwise
• IsEnd(s) = 1[s = n]

BEFORE YOU MOVE FORWARD: Make sure you understand why
the MDP is formulated the way it is!
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Compute closed form expressions for (i) the value of a policy where Sabina always
walks at every location and (ii) the value of a policy where Sabina always waits
for the bus at every location (using some or all of the variables ϵ, α, n). Assume
a discount rate of γ = 1.

• VWalk(s) =

• VBus(s) =

For what values of ϵ (as a function of α and n) is it advantageous to walk rather
than take the bus?
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Solution Since walking is deterministic, the expected value for always walking
is just the cost to get to the end n from a given state s:

VWalk = −(n− s).

Don’t forget the negative! In MDPs we maximize reward, but in this context, we
want to minimize the time to takes to get to the gym. Hence, we make our rewards
negative as maximizing over negative costs will give us our desired minimum time!

The expected value for always waiting for bus is trickier. Since the transition is
no longer deterministic we need to split our value into the expected value of the
successive state, weighted by the probability that we end up in that successive
state. Hence:

VBus(s) =P[bus comes and we go to n](R(s,Bus, n) + γVBus(n))

+ P[bus doesn’t come and we stay at s](R(s,Bus, s) + γVBus(s))

We only need to consider these two states since anything else happening has prob-
ability 0. Now we can just substitute in the correct values for these expressions
and get:

VBus(s) = ϵ(−1− α(n− s)) + (1− ϵ)(−1 + VBus(s)).

Simplifying, we get:

VBus(s) = −α(n− s)− 1

ϵ
.

For walking to be preferable, we need VWalk(s) ≥ VBus(s), or equivalently:

n− s ≤ α(n− s) +
1

ϵ
⇔ (1− α)(n− s) ≤ 1

ϵ
⇔

{
ϵ ≤ 1

(1−α)(n−s)
, α < 1

ϵ > 0 , α ≥ 1.
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(b) Unfortunately, Sabina’s town is unable to provide transition probabilities or a
reward function (i.e. a bus schedule), making the above MDP possibly (and likely)
inaccurate. To get around this, Sabina decides to use reinforcement learning,
specifically Q-learning to determine the best policy. Sabina starts going around
town both by bus and by walking, recording the following data:

s0 a1 r1 s1 a2 r2 s2 a3 r3 s3 a4 r4 s4 a5 r5 s5
1 Bus -1 1 Bus -1 1 Bus 3 3 Walk 1 4 Walk 1 5

Run the Q-learning algorithm once over the given data to compute an estimate of
the optimal Q-value Qopt(s, a). Process the episodes from left to right. Assume all
Q-values are initialized to zero, and use a learning rate of η = 0.5 and a discount
of γ = 1.

• Q̂(1,Walk) =

• Q̂(1,Bus) =

• Q̂(3,Walk) =

• Q̂(3,Bus) =

• Q̂(4,Walk) =

• Q̂(4,Bus) =

5



Solution On each (s, a, r, s′), recall the Q-learning updates:

Q̂opt(s, a)← (1− η)Q̂opt(s, a) + η(r + γ max
a′∈Actions(s′)

Q̂opt(s
′, a′)). (1)

Now the concrete updates:

• On (1,Bus,−1, 1): Q̂(1,Bus) = 0.5(0) + 0.5(−1 + 1(max(0, 0))) = −0.5

• On (1,Bus,−1, 1): Q̂(1,Bus) = 0.5(−0.5) + 0.5(−1 + 1(max(0,−0.5))) =
−0.75

• On (1,Bus, 3, 3): Q̂(1,Bus) = 0.5(−0.75) + 0.5(3 + 1(max(0, 0))) = 1.125

• On (3,Walk, 1, 4): Q̂(3,Walk) = 0.5(0) + 0.5(1 + 1(max(0, 0))) = 0.5

• On (4,Walk, 1, 5): Q̂(4,Walk) = 0.5(0) + 0.5(1 + 1(max(0, 0))) = 0.5

The final values:

• Q̂(1,Walk) = 0

• Q̂(1,Bus) = 1.125

• Q̂(3,Walk) = 0.5

• Q̂(3,Bus) = 0

• Q̂(4,Walk) = 0.5

• Q̂(4,Bus) = 0
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2) Problem 2: Choosing an Algorithm

For each of the following questions, choose one or more of the algorithm(s) below to
solve the given problem.

• Model-Based Monte Carlo.

• Q-Learning

• Model-Free Monte Carlo.

• SARSA

(a) You work in a chemistry lab that is conducting some extremely expensive exper-
iments. Unfortunately, sometimes the actions you take cause non-deterministic
outcomes (due to unobservable factors), and your chemical reaction transitions to
a different state randomly. Your team would like to figure out the best course of
action that’ll most likely finish the experiments without fail, but you don’t have
enough budget for lots of trials. Fortunately, the number of states and possible
actions are relatively small, and you have detailed notes on data from many past
experiments.

Solution Model-Based Monte Carlo would let us simulate many strategies (poli-
cies) using old and new data by generating T̂ and R̂ before using Policy Iteration.

(b) Your roommate seems to win a lot of money playing poker against their friends.
Based on what you know about them, you’ve got some ideas on what strategies
you can use to possibly beat them. But, you’re concerned that if you tailor your
strategy to your roommate’s specific playstyle, then you’ll lose to their friends
in the crossfire. You decide to build a poker bot to test your strategies against
random players online. You choose your reward to be how much you win at the
end of a round.

Solution Model-Free Monte Carlo is a good choice since we only get a reward
at the end of a round (at a terminal state), meaning that SARSA updates would
be slower. Since we are testing specific policies, we need an on-policy algorithm.

(c) You decide to foster a cat from the local Humane Society. Unfortunately, the cat
is quite skittish and really likes the dark. As such, he won’t get out from under
your bed. You’ve assembled an arsenal of treats, toys, and trinkets to try and
lure him out. Some things seem to pique his interest, but he won’t seem to come
out. You’re pretty sure that presenting him with the right order of items at the
right time of day might convince him to come out.

Solution Q-Learning would work well here, since we’d like to learn an optimal
policy (get the cat out from under the bed), and have no idea how he reacts to
things. Alternatively, Model-Based Monte Carlo.
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3) [optional] Problem 3: Another MDP

You’re programming a self-driving car that can take you from home (position 1) to
school (position n). At each time step, the car has a current position x ∈ {1, . . . , n}
and a current velocity v ∈ {0, . . . ,m}. The car starts with v = 0, and at each time
step, the car can either increase the velocity by 1, decrease it by 1, or keep it the same;
this new velocity is used to advance x to the new position. The velocity is not allowed
to exceed the speed limit m nor return to 0.

In addition, to prevent people from recklessly cruising down Serra Mall, the university
has installed speed bumps at a subset of the n locations. The speed bumps are located
at B ⊆ {1, . . . , n}. The car is not allowed to enter, leave, or pass over a speed bump
with velocity more than k ∈ {1, . . . ,m}. Your goal is to arrive at position n with
velocity 1 in the smallest number of time steps.

Figure 1 shows an example with n = 9 positions and one speed bump B = {5}. If the
maximum speed is m = 3 and k = 1 for a speed bump, then an example of a legal
path is the following:

(1, 0)
+1→ (2, 1)

+1→ (4, 2)
−1→ (5, 1)

0→ (6, 1)
+1→ (8, 2)

−1→ (9, 1)

Figure 1: An example of a legal path that takes 6 time steps with m = 3 and k = 1. We
show the position-velocity pairs (x, v) at each time step, and each number above an arrow
is an acceleration (change in velocity).

(a) It turns out that you were so excited about the AI algorithms that you didn’t
really pay much attention to the brakes of the car. As a result, when you try to
decrease the velocity by 1, with some failure probability α, the velocity actually
stays the same.
To simplify our lives, assume there are no speed bumps. Assume a reward of R if
we get to school (at a velocity of 1) but −1 if we pass the school, with a cost of
1 per time step.
Let us formulate the resulting problem as an MDP:

• sstart = (1, 0)

• Actions((x, v)) = {a ∈ {+1, 0,−1} : x + v + a ≤ n ∧ v + a ≤ m ∧ (v + a ≤
k ∨ {x, . . . , x+ v + a} ∩B = ∅)}.
Suppose we want to apply acceleration a. First, we want to make sure we
don’t exceed the school (x + v + a ≤ n) or go out of the velocity range
(v + a ≤ m). Next, we want to make sure that we’re not entering, passing
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through, or leaving any speed bumps at a velocity greater than k. This is
captured logically by ensuring a safe speed (v+a ≤ k) or checking that there
are no speed bumps between x and the new location x+ v + a.

• T ((x′, v′)|(x, v), a) = (to be filled out by you below)
• Reward((x, v), a, (x′, v′)) = R · 1[x′ = n ∧ v′ = 1]− 1

• IsEnd((x, v)) = 1[x ≥ n]

(i) Fill out the definition of the transition probabilities T :

T ((x′, v′)|(x, v), a) =

Solution

T ((x′, v′)|(x, v), a) =


α if x′ = x+ v′ and v′ = v and a = −1
1− α if x′ = x+ v′ and v′ = v + a and a = −1
1 if x′ = x+ v′ and v′ = v + a and a ̸= −1
0 otherwise.
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(ii) Let us explore the effect of unreliable brakes. Consider the example in Figure
2 below.

Figure 2: A small driving environment without speed bumps.

Consider two policies:

• π1: always move with velocity 1:

π1((1, 0)) = +1 π1((2, 1)) = 0 π1((3, 1)) = 0 π1((4, 1)) = 0.

• π2: speed up and slow down:

π2((1, 0)) = +1 π2((2, 1)) = +1 π2((4, 2)) = −1.

Compute the expected utility of π1 as a function of α and R (with discount γ = 1).

Solution The policy π1 deterministically obtains reward R− 4 . Using Reward(x′, v′)
we have Reward(2, 1)+Reward(3, 1)+Reward(4, 1)+Reward(5, 1) = −1− 1−
1− 1 +R

Compute the expected utility of π2 as a function of α and R (with discount γ = 1).

Solution The policy π2 obtains reward (1− α)R− 3 . We only get reward R

if we are able to break at the end so: (1 − α)(Reward(2, 1) + Reward(4, 2) +
Reward(5, 1)) + α
(Reward(2, 1) +Reward(4, 2) +Reward(6, 2)) = (1− α)(R− 3) + α(−3) = (1−
α)R− 3

For what values of α and R does π2 obtain higher expected reward than π1? Your
answer should be an expression relating α and R.

Solution Therefore, π2 is better when (1− α)R− 3 > R− 4, which is precisely
when α < 1/R .
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(b) Bad news: you realize that your brakes are not only faulty, but that you don’t
know how often they fail (α is unknown). Circle all of the following algorithms
that can be used to compute the optimal policy in this setting:

Model-Based Value Iteration Model-Free Monte Carlo SARSA Q-learning

Solution Model-based value iteration would estimate the transition prob-
abilities, which can be used to compute the optimal policy. Q-learning can be
used to directly estimate the value of the optimal policy. Model-free Monte Carlo
and SARSA can only be used to compute the value of a fixed policy.
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