CS221 Problem Workout

Week 2

Introduction

Samantha Liu

General OH: Thursdays HW OH: Tuesdays 2:00-4:00 Online

Kevin Li

General OH: Wednesdays 5:00-7:00 Online HW OH: Fridays 4:30-6:30 Online

Last Week: 3 Design Decisions in ML

Example: linear regression $\quad \phi(x) \in \mathbb{R}^{d}, y \in \mathbb{R}$

1. Define a model:

$$
f_{\mathbf{w}}(x)=\mathbf{w} \cdot \phi(x)
$$

2a. Define a loss function for each example:

$$
\operatorname{Loss}(x, y, \mathbf{w})=\left(f_{\mathbf{w}}(x)-y\right)^{2}
$$

2b. Decide how to aggregate the per-example losses:

$$
\operatorname{TrainLoss}(\mathbf{w})=\frac{1}{\left|\mathcal{D}_{\text {train }}\right|} \sum_{(x, y) \in \mathcal{D}_{\text {train }}} \operatorname{Loss}(x, y, \mathbf{w})
$$

3. Use GD / SGD to compute w:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \nabla_{\mathbf{w}} \operatorname{Train} \operatorname{Loss}(\mathbf{w})
$$

This Week: Key Takeaways

Example: linear regression, $\quad \phi(x) \in \mathbb{R}^{d}, y \in \mathbb{R}$

1. Define a model:

What is ϕ ? How can we get

$$
f_{\mathrm{w}}(x)=\mathrm{w} \cdot \phi(x)
$$ non-linear decision boundaries?

2a. Define a loss function for each example:

$$
\operatorname{Loss}(x, y, \mathbf{w})=\left(f_{\mathbf{w}}(x)-y\right)^{2}
$$

2b. Decide how to aggregate the per-example Tosses:

What are the fairness implications of minimizing the average group loss? What about the maximum group loss?
3. Use GD / SGD to compute w:

Can we break down the steps of taking gradients s.t. we can write algorithms (e.g. backpropagation) to automatically compute gradients for us?

Nonlinear Features

Motivation: Linear Classification

x_{1}	x_{2}	$f(x)$
0	2	1
-2	0	1
1	-1	-1

$$
\begin{aligned}
& f(x)=\operatorname{sign}(\overbrace{[-0.6,0.6]}^{\mathbf{w}} \cdot \overbrace{\left[x_{1}, x_{2}\right]}^{\phi(x)}) \\
& f([0,2])=\operatorname{sign}([-0.6,0.6] \cdot[0,2])=\operatorname{sign}(1.2)=1 \\
& f([-2,0])=\operatorname{sign}([-0.6,0.6] \cdot[-2,0])=\operatorname{sign}(1.2)=1 \\
& f([1,-1])=\operatorname{sign}([-0.6,0.6] \cdot[1,-1])=\operatorname{sign}(-1.2)=-1
\end{aligned}
$$

Decision boundary: x such that $\mathbf{w} \cdot \phi(x)=0$

x_{1}

Motivation: Linear Classification

x_{1}	x_{2}	$f(x)$
0	2	1
-2	0	1
1	-1	-1

Linear in what?	
$f_{\mathbf{w}}(x)=\mathbf{w} \cdot \phi(x)$	
Linear in $\mathbf{w} ? \quad$ Yes	
Linear in $\phi(x) ?$	Yes
Linear in $x ?$	No!

Motivation: Linear Classification

Linear in what?	
$f_{\mathbf{w}}(x)=\mathbf{w} \cdot \phi(x)$	
Linear in $\mathbf{w} ? \quad$ Yes	
Linear in $\phi(x) ?$	Yes
Linear in $x ?$	No!

$$
\begin{gathered}
\phi(x)=\left[x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right] \\
f(x)=\operatorname{sign}([2,2,-1] \cdot \phi(x))
\end{gathered}
$$

Equivalently:

$$
f(x)= \begin{cases}1 & \text { if }\left\{\left(x _1-1\right)^{2}+\left(x _2-1\right)^{2} \leq 2\right\} \\ -1 & \text { otherwise }\end{cases}
$$

The Non-Linear Feature Map can be anything!

$$
\begin{aligned}
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \rightarrow \quad \phi(x)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cos \left(x_{1}\right)
\end{array}\right] \\
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \rightarrow \phi(x)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1\left\{x_{1}<0\right\}
\end{array}\right] \\
& x=\mathbb{R}^{3} \in \mathbb{R}^{3 \times W \times H} \rightarrow \phi(x)=\sigma\left(V_{2} \sigma\left(V_{1} x\right)\right)
\end{aligned}
$$

Problem 1:

- $\mathcal{D}_{1}=\{(-1,+1),(0,-1),(1,+1)\}$.

- $\mathcal{D}_{2}=\{(-1,-1),(0,+1),(1,-1)\}$

Try a 1-Dimensional Feature Function

Need at least a Two-Dimensional Feature

- $\mathcal{D}_{1}=\{(-1,+1),(0,-1),(1,+1)\}$.

$$
x=-1 \quad x=0
$$

$$
x=1
$$

- $\mathcal{D}_{2}=\{(-1,-1),(0,+1),(1,-1)\}$.

Many Solutions!

One option is $\phi(x)=\left[1, x^{2}\right]$, and using $\mathbf{w}_{1}=[-1,2]$ and $\mathbf{w}_{2}=[1,-2]$.

Many Solutions!

One option is $\phi(x)=\left[1, x^{2}\right]$, and using $\mathbf{w}_{1}=[-1,2]$ and $\mathbf{w}_{2}=[1,-2]$.

Linearly Separating EVERY Dataset - is it possible?

- Given pairs: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Design a feature map $\phi(x)$ such that we can classify

$$
\left(\phi\left(x_{1}\right), y_{1}\right), \ldots,\left(\phi\left(x_{n}\right), y_{n}\right)
$$

for some weight vector w

- Note: We never said that this has to be a good feature map!

Linearly Separating EVERY Dataset - is it possible?

$$
\phi(x)= \begin{cases}\text { lookup y in training set }(x) & x \in \mathcal{D}_{\text {train }} \\ 0 & \text { o.w }\end{cases}
$$

And use $\mathrm{w}=1$. This is "memorizing the training set."
Moral of the story: 100\% train accuracy != good test accuracy!

More Practice

- The (optional) Problem 4 from this Problem Session
- Problem 1b on the HW 2

Backpropagation

Drawing a Computational Graph

Preparation:

- Write every function $f(a, b, \ldots)$ as a vertex with one incoming edge per input variable.
- Write down the gradients (green) of f with respect to each input (a, b) as functions of (a, b) along each respective edge.

Drawing a Computational Graph

Review from Lecture:

$$
f(a)=a^{2} \quad f(a, b)=\max (a, b) \quad f(a)=\sigma(a)
$$

Problem 2

Consider the following function

$$
\operatorname{Loss}(x, y, z, w)=2(x y+\max \{w, z\})
$$

Run the backpropagation algorithm to compute the four gradients (each with respect to one of the individual variables) at $x=3, y=-4, z=2$ and $w=-1$. Use the following nodes: addition, multiplication, max, multiplication by a constant.

Problem 2

Step 1: Draw a computational graph for the function:

$$
\operatorname{Loss}(x, y, z, w)=2(x y+\max \{w, z\})
$$

Next Step: Forward Pass

Step 2: After getting your data, flow up the graph and compute values at each function node (in yellow) based on the input(s) from the incoming edge(s).

Problem 2

Step 2: After getting your data, flow up the graph and compute values at each function node (in yellow) based on the input(s) from the incoming edge(s).

$$
\begin{gathered}
\operatorname{Loss}(x, y, z, w)=2(x y+\max \{w, z\}) \\
x=3, y=-4, z=2 \text { and } w=-1
\end{gathered}
$$

Next Step: Backward Pass for the Gradients

Step 2: Flow down the graph now and compute your gradients (in purple) based on the input(s) from the incoming edge(s) and the chain rule.

$$
\begin{aligned}
& \text { Example: } \\
& \mathrm{c}=81 \quad \boldsymbol{c} \underset{\frac{(\cdot)^{2}}{4}}{ } \\
& \frac{\partial c}{\partial b}=2 b \quad \mathrm{dc} / \mathrm{db}=\mathbf{2}(9)=18 \\
& \mathrm{~b}=9 \quad \boldsymbol{b} \frac{(\cdot)^{2}}{4} \\
& \frac{\partial b}{\partial a}=2 a \\
& a=3 \\
& a
\end{aligned}
$$

Problem 2

Step 2: Flow down the graph now and compute your gradients (in purple) based on the input(s) from the incoming edge(s) and the chain rule.

$$
\begin{gathered}
\operatorname{Loss}(x, y, z, w)=2(x y+\max \{w, z\}) \\
x=3, y=-4, z=2 \text { and } w=-1
\end{gathered}
$$

What are each of the following?

- dLoss/dx
- dLoss/dy
- dLoss/dw
- dLoss/dz

Problem 2

$\operatorname{Loss}(x, y, z, w)=2(x y+\max \{w, z\})$

$$
x=3, y=-4, z=2 \text { and } w=-1
$$

K-Means Clustering

K-Means

- K-Means is an unsupervised algorithm to split data points into K clusters.
- We want to minimize the sum of distances from each point to its assigned centroid.

Initialize $\boldsymbol{\mu}=\left[\mu_{1}, \ldots, \mu_{K}\right]$ randomly.
For $t=1, \ldots, T$:
Step 1: set assignments z given $\boldsymbol{\mu}$
For each point $i=1, \ldots, n$:

$$
z_{i} \leftarrow \arg \min _{k=1, \ldots, K}\left\|\phi\left(x_{i}\right)-\mu_{k}\right\|^{2}
$$

Step 2: set centroids $\boldsymbol{\mu}$ given \mathbf{z}
For each cluster $k=1, \ldots, K$:

$$
\mu_{k} \leftarrow \frac{1}{\left|\left\{i: z_{i}=k\right\}\right|} \sum_{i: z_{i}=k} \phi\left(x_{i}\right)
$$

Example: 2-Means for 4 data points (in red)

Initialize random centroids (in purple)
For each point, assign to the closest centroid

Move the centroids to min sum of distances

K-Means

- K-Means is an unsupervised algorithm to split data points into K clusters.
- We want to minimize the sum of distances from each point to its assigned centroid.

Initialize $\boldsymbol{\mu}=\left[\mu_{1}, \ldots, \mu_{K}\right]$ randomly.
For $t=1, \ldots, T$:
Step 1: set assignments z given $\boldsymbol{\mu}$
For each point $i=1, \ldots, n$:
$z_{i} \leftarrow \arg \min _{k=1, \ldots, K}\left\|\phi\left(x_{i}\right)-\mu_{k}\right\|^{2}$
Step 2: set centroids $\boldsymbol{\mu}$ given \mathbf{z}
For each cluster $k=1, \ldots, K$:

$$
\mu_{k} \leftarrow \frac{1}{\left|\left\{i: z_{i}=k\right\}\right|} \sum_{i: z_{i}=k} \phi\left(x_{i}\right)
$$

Example: 2-Means for 4 data points (in red)

Repeat until the clusters no longer change

The 3rd point from the left changes clusters in the end!

Problem 3

Consider doing ordinary K-means clustering with $K=2$ clusters on the following set of 3 one-dimensional points:

$$
\begin{equation*}
\{-2,0,10\} . \tag{2}
\end{equation*}
$$

Recall that K-means can get stuck in local optima. Describe the precise conditions on the initialization $\mu_{1} \in \mathbb{R}$ and $\mu_{2} \in \mathbb{R}$ such that running K-means will yield the global optimum of the objective function. Notes:

- Assume that $\mu_{1}<\mu_{2}$.
- Assume that if in step 1 of K-means, no points are assigned to some cluster j, then in step 2, that centroid μ_{j} is set to ∞.

Things to Consider when doing K-Means

- \quad More clusters $=$ lower loss
meaning... if one centroid gets set to infinity and all 3 points end in the same cluster, then we miss the global optimum!
- So we need $\mathbf{2}$ clusters in the end - which points have to end up in different clusters?

Things to Consider when doing K-Means

- \quad More clusters = lower loss
meaning... if all 3 points end in the same cluster, then we miss the global optimum!
- So we need 2 clusters in the end - which points have to end up in different clusters?
-2 and 10 must end up in different clusters
Consider the following (random) clusters

- What about point 0?

Problem 3

- What about point 0?
- 0 can be assigned to either cluster, and it'll work out!
- Consider what happens if -2 and 0 are assigned to the same cluster...

Cluster1 would end at -1 , and Cluster2 would end at 10.
No change would happen on the second pass.

- Consider what happens if 0 and 10 are assigned to the same cluster...

Problem 3

- Consider what happens if 0 and 10 are assigned to the same cluster...

When the clusters move to minimize the sum of distances, we get Cluster1 at -2 and Cluster2 at 5 (halfway between 0 and 10):

But, on the next pass, 0 gets assigned to Cluster1 because it's closer, leading to Cluster1 at -1 and Cluster2 at 10 (the same result as the other case!)

Problem 3

- At the end of the day, the key observation was that -2 and 10 needed to be assigned to different clusters.
- This condition on the initial assignments of -2 and 10 can be formally written as

$$
\left|-2-\mu_{1}\right|<\left|-2-\mu_{2}\right| \text { and }\left|10-\mu_{1}\right|>\left|10-\mu_{2}\right|
$$

that is, the initial positions of the two clusters have to be such that: -2 is initially closer to Cluster1 than Cluster2 10 is initially closer to Cluster2 than Cluster1

Final Questions?

